Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain.
نویسندگان
چکیده
OBJECTIVE Vessels in brain arteriovenous malformations are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of brain arteriovenous malformation than the general population. We tested the hypothesis that vascular endothelial growth factor impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell coverage. METHODS AND RESULTS Adult Alk1(1f/2f) mice (loxP sites flanking exons 4-6) and wild-type mice were injected with 2×10(7) PFU adenovious-cre recombinase and 2×10(9) genome copies of adeno-associated virus-vascular endothelial growth factor to induce focal homozygous Alk1 deletion (in Alk1(1f/2f) mice) and angiogenesis. Brain vessels were analyzed 8 weeks later. Compared with wild-type mice, the Alk1-deficient brain had more fibrin (99±30×10(3) pixels/mm(2) versus 40±13×10(3); P=0.001), iron deposition (508±506 pixels/mm(2) versus 6±49; P=0.04), and Iba1(+) microglia/macrophage infiltration (888±420 Iba1(+) cells/mm(2) versus 240±104 Iba1(+); P=0.001) after vascular endothelial growth factor stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-smooth muscle actin negative vessels (52±9% versus 12±7%, P<0.001), fewer vascular-associated pericytes (503±179/mm(2) versus 931±115, P<0.001), and reduced platelet-derived growth factor receptor-β expression. CONCLUSIONS Reduction of mural cell coverage in response to vascular endothelial growth factor stimulation is a potential mechanism for the impairment of vessel wall integrity in hereditary hemorrhagic telangiectasia type 2-associated brain arteriovenous malformation.
منابع مشابه
Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation.
Loss-of-function activin receptor-like kinase 1 gene mutation (ALK1+/-) is associated with brain arteriovenous malformations (AVM) in hereditary hemorrhagic telangiectasia type 2. Other determinants of the lesional phenotype are unknown. In the present study, we investigated the influence of high vascular flow rates on ALK1+/- mice by manipulating cerebral blood flow (CBF) using vasodilators. A...
متن کاملNO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels.
NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, alpha-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal ...
متن کاملDe novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation.
BACKGROUND AND PURPOSE In humans, activin receptor-like kinase 1 (Alk1) deficiency causes arteriovenous malformations (AVMs) in multiple organs, including the brain. Focal Alk1 pan-cellular deletion plus vascular endothelial growth factor stimulation induces brain AVMs in the adult mouse. We hypothesized that deletion of Alk1 in endothelial cell (EC) alone plus focal vascular endothelial growth...
متن کاملEnhanced Responses to Angiogenic Cues Underlie the Pathogenesis of Hereditary Hemorrhagic Telangiectasia 2
Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic vascular disease in which arteriovenous malformations (AVMs) manifest in skin and multiple visceral organs. HHT is caused by heterozygous mutations in endoglin (ENG), activin receptor-like kinase 1 (ALK1), or SMAD4. ALK1 regulates angiogenesis, but the precise function of ALK1 in endothelial cells (ECs) remains elusive. Since most blood v...
متن کاملNetrin-4 promotes mural cell adhesion and recruitment to endothelial cells
Netrins are secreted molecules involved in axon guidance and angiogenesis. We previously showed that Netrin-4 acts as an anti-angiogenic factor by inhibiting endothelial cell (EC) functions. In this study, we investigated the effects of Netrin-4 on vascular smooth muscle cell (VSMC) activity in vitro and in vivo. We show that exogenous Netrin-4 stimulated VSMC adhesion and migration, and increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2013